机器视觉系统的核心在于视觉子系统和运动子系统的整合。为了使这一设计的核心环节顺利进行,需要提早准备精确的物料清单,降低由于运动和视觉组件不协调所带来的风险,减少集成时间和成本。而在机器视觉系统的设计时应该遵循以下几个原则,即集成机器视觉设计、协同集成、同步集成、视觉导引运动控制及视觉伺服控制。
在一套集成机器视觉系统中,运动系统和视觉系统可以在不同层级进行交互作业,从基本的信息交换到高级的视觉反馈。交互的层级取决于设备的要求,也就是所谓的顺序、准确性和精度以及设备所需完成的任务的自然属性。而集成商必须首先定义当前和未来的需求,并根据这些需求决定最适合项目的集成种类。
协同集成是最基本的集成方式。采用这种方式进行集成,运动系统和视觉系统能够交换基本信息,例如速度和时间。在运动系统和视觉系统之间的通讯时间通常是几十秒。例如在纸病检测系统中,运动系统移动纸张,通常移动速率恒定,视觉系统发出脉冲链以触发摄像头,使用摄像头扑捉到的图像来监视纸张。视觉系统需要明确纸张移动的快慢,以确定触发摄像头的速度。
在同步集成系统中,运动系统和视觉系统通过高速I/O触发实现同步。运动系统和视觉系统之间的高速信号用来触发这两种系统之间的事件和通讯命令。这种I/O同步能够有效地使不同系统中的软件程序达到同步。
视觉导引运动控制系统中,视觉系统为运动系统提供一些引导,例如零件的位置或者零件摆放朝向上的误差。由于这是一种更加先进的集成类型,所以在运动系统和视觉系统两者的交互作业中多出了一个层级。同时,视觉系统只在运动的开始才向运动系统提供导向。在运动过程当中或者运动过程结束之后,并不使用反馈来验证运动是否正确。由于缺乏反馈,在像素-距离变换过程中容易产生运动误差,而且运动的精度完全依赖于运动控制系统。在毫米级运动和低于毫米
级运动的高精度应用中这种缺点尤其明显。如果视觉系统能够在运动过程中为运动系统提供连续不断的反馈,那么视觉导引运动控制的缺点就能够被克服。
在视觉伺服控制系统中,机器视觉系统不仅仅能够为运动系统提供初始导向,还能够在运动的过程中提供连续不断的反馈。视觉系统采集、分析并处理图像,以位置设定点的形式提供反馈信息,实现定位循环(动态观察并移动)或者实际位置反馈(直接伺服)。