视觉系统的特点是自动化、客观、非接触和高精度、速度,以及工业现场环境下的可靠性。
照明部分是视觉系统的关键。照明将工作目标和背景之间产生清晰的对比。
照明可分为 4种:①背光,可产生强反差,常用于二值图像识别技术。②漫射顶光,适用于识别分离的部件或表面方向未知的部件。③直射顶光,它能在目标表面稳定时产生可靠的高反差图像,适用于二值图像识别。对表面略为粗糙的扁平部件能产生光亮稳定的图像区域。对弯曲表面或平面抛光表面可设置强光。④结构光,即用激光点、束或网照明景物,用于景物三维信息的三角测量。
图像预处理其作用是改进图像质量,以便进行图像识别。典型的图像预处理有4个步骤:①阴影校正,即对景物上不均匀的照明进行平滑补偿。②灰度校正,即将输入的灰度值进行线性或非线性的变换以求改进图像质量。③噪声过滤,通常采用低(频)通(过)运算器抑制噪声。④图像增强,即图像轮廓增强,采用高(频)通(过)运算器。 数据压缩最简单的数据压缩技术是取图像灰度的阈值,产生二值图像。二值图像还可进一步压缩。按区域压缩和按轮廓压缩是两种基本的数据压缩方法,它们既可用于二值图像也可用于灰度图像。但在工业视觉系统中,按区域压缩的方法常用于二值图像,按轮廓压缩的方法则常用于灰度图像。这是因为早期的工业视觉系统多采用二值图像,所处理的部件可用整体区域特征加以识别,而从灰度图像获取可靠的区域型特征则比较困难。二值图像按区域的压缩是将图像分为若干连通区域。通过连通程序来完成这项工作,同时为每个区域编号。对每个区域计算面积、重心、惯量矩、空洞数目、轮廓线长度、最小外切矩形等典型特征参数。这些特征参数就作为下一步图像解释的输入。灰度图像按轮廓的压缩是从经过增强处理的图像上抽取直线、拐角、圆弧等轮廓特征或求出代表轮廓线方向斜率的一组线段。这后一种方法常出现线段丢失、破碎以及重合等误差,需要用关于景物的先验知识加以判断。数据压缩有时被当作图像分割,但实际上比把图像分为有意义单元的图像分割简单。
图像解释即按照任务对图像内容进行高度概括的描述。它基于图像的模型匹配。模型是对所要识别的理想模式外形的描述,包括所有可能的部分畸变、平移或旋转的模式的集合。将其中一个模式当作原型,那么解释就是寻找与经压缩后的数据匹配得最好的原型,并用描述模型的参数给出解释。最简单的模型匹配方法是样板匹配,它仅适用于原型很少的场合,而且计算量也很大。在一般情况下需要考虑大量原型,此时可采用搜索法、松弛法和聚类法,但对于工业视觉系统都不太理想。已经用这些方法初步解决重叠工件的识别问题。虽然松弛法和聚类法已经是实验室中用于图像解释的极普通的方法,但由于成本昂贵尚未被普遍采用到工业视觉系统的设计中去。
用于自动检验、工件加工和装配自动化以及生产过程的控制和监视的图像识别机器。工业视觉系统的图像识别过程是按任务需要从原始图像数据中提取有关信息、高度概括地描述图像内容,以便对图像的某些内容加以解释和判断。
自动检验是工业视觉系统最重要的应用领域。它的优点是可提供快速无接触测量,对部件的检验率几乎可达100%,而且视觉检验机器装入现有生产系统比机器人视觉系统方便。在很多工业生产领域中,自动检验是实现生产自动化的必要条件。在自动输送部件的系统中,甚至像螺钉这样简单的零件也必须 100%地加以检验,否则会降低机器的效率,甚至引起严重事故。自动检验的任务主要包括完备性检验、形状检验和表面检验:
①完备性检验对部件上的零件是否完备、缺失进行检验。部件上丢失零件可能导致严重后果。例如,如果丢失发动机阀门弹簧的帽卡,则有可能使发动机毁坏。
②形状检验这方面的例子有检验螺杆或螺钉这样的简单部件、检验小圆片的圆度、检验包装上或瓶子上的标签的尺寸、形状和位置等。形状检验的一个最重要的应用是检验印刷电路板,包括检测板上的导线破裂、短路、突出物以及相邻两线的距离等。
③表面检验这是质量控制的一个重要步骤。例如,检验钢板、轴承部件、搪瓷或玻璃的表面。通常必须检验一批序贯通过的不同形状的表面,并能对缺陷损伤加以区分。
部件加工和装配这类应用的主要视觉任务是确定部件的位置和方向。部件通常装在容器中运输或存储,在此过程中原始位置被打乱。包括从托板对部件位置的微小干扰到把部件装箱这样的过程都会使原始位置混乱。对此尚无通用解决办法。针对机器人随机抓取传送带上的定向部件已研制了数种视觉系统。但这类应用场合在生产过程中不具普遍性。在芯片焊接过程中需用视觉系统导引焊接位置,并辅助振动传送带对元件的机械分类。在用机器人安装摩托车轮时也需用视觉系统确定轮毂的位置和方向。大多数装配任务需要用视觉和触觉配合才行,例如把针插入洞中这样的任务还可用特制的机械系统配合完成。
在行业应用方面,用机器视觉技术取代人工,可以提供生产效率和产品质量。例如在物流行业,可以使用机器视觉技术进行快递的分拣分类,不会出现目前大多快递公司人工进行分拣,减少物品的损坏率,可以提高分拣效率,减少人工劳动。